Student Name: Student Number:

Dept. of Computer Engineering

Final Exam, First Semester: 2007/2008

Course Title: Modeling \& Simulation	Date: 29/1/2008
Course No: (630573)	Time Allowed: 2 Hours
Lecturer: Dr. Mohammed Mahdi	No. of Pages: 2

Question 1:

Objectives:
This question is about the principles of modeling and simulation.
A) Choose the right answer: - (3 Marks)

1. In state-space model the dynamic matrix deals with:-
a) Input.
b) Output.
c) States.
d) None of the above.
2. Direct matrix: -
a) Always exists.
b) Does not exist.
c) Sometime exists.
d) None of the above.
B) Explain the following briefly: -(6 Marks)

Simulation can help in: -
1- Exploring new operating procedures.
2- Time compression or expansion.
3- Answering "what if" questions.
C) What are the possible errors one can face in the identification procedures? (3 Marks)

Question 2:

(12 Marks)
Objectives:
This question is about classical and modern model representations and Matlab.
A) Prove that the classical transfer function model $=\mathbf{C}(\mathbf{S I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D} .(3$ Marks)
B) Show with simple example how can for, while, if..else be implemented using Matlab? (3 Marks)
C) Derive the general solution for first order model subjected to a unit ramp input. Discuss your result.

Ouestion3:

Objectives:
This question is about extracting model and Matlab.
A) Given the band - stop filter with parallel topology. It is required to derive its model. Discuss your results.
(7 Marks)

1
B) Give a simple example on the use of the following matlab functions: - roots (p), poly(r), conv (a,b), $\operatorname{deconv}(\mathrm{c}, \mathrm{b})$, polyder(g), and plot($\mathrm{x}, \mathrm{y}^{\prime} \mathrm{g}$ *'). (6 Marks)

Ouestion4:
(13 Marks)
Objectives:
This question is about analog simulation circuit diagrams and Matlab.
Given the following system $\ddot{y}+5 \dot{y}+6 y=u$. It is required to: -
A) Simulate it using two methods. (7 Marks)
B) Write a Matlab code for the dynamic matrix to find Eigen values, transpose, and polynomial showing the expected values. (6Marks)

